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A description of quarks is given in terms of a finite-dimensional Hilbert space 
model. Color and flavor observables are defined and the corresponding motion 
and energy observables are constructed using the methods of finite-dimensional 
quantum mechanics. It is shown that a fundamental color condition implies that 
quarks can only combine as mesons, baryons, antibaryons, and collections of 
these. Baryon and meson Hamiltonians are proposed and various masses are 
computed. 

1. I N T R O D U C T I O N  

In a previous paper (Gudder, 1982) we showed that pure quark states 
can be represented by unit vectors in a finite-dimensional Hilbert space 
V = C 72. This results in a finite-dimensional model for the description of 
quarks. The space V admits a decomposition into a tensor product of five 
subspaces each of which is determined by a parameter. These parameters 
are color, generation, charge, type, and spin. The tensor product of the 
generation and charge subspaces forms the flavor space. 

After defining the color and flavor observables, we apply the methods 
of finite-dimensional quantum mechanics (Gudder and Naroditsky, 1981) to 
construct corresponding motion and energy observables. We define a class 
of vectors in the quark tensor space called color vectors. Assuming that the 
color vectors are the only observable physical vector states, it follows that 
quarks can only combine as mesons, baryons, antibaryons and collections of 
these. We then classify baryons and mesons according to their statistics, 
generation, and quark composition. Finally, we propose baryon and meson 
Hamiltonians and test these Hamiltonians against known particle masses. 
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2. F I N I T E - D I M E N S I O N A L  Q U A N T U M  M E C H A N I C S  

This section summarizes the basic principles of  finite-dimensional 
quan tum mechanics  which will be needed in the sequel. For  details and a 
more  complete discussion, we refer the reader to Gudde r  and Narodi t sky  
(1981). Let r be a positive integer and let e I . . . . .  e~ be the s tandard basis for 
the r-dimensional complex Hilbert  space V =  CL We define the finite 
Fourier transform Fr: V-'> V as 

(Fr f ) ( j )  = r- , /2  ~ f (k)eZ, i jk /r ,  
k=l 

i= ( -  1) I/z, j =  1 . . . . .  r 

Then Fr is unitary and 

( F r * f ) ( j )  = r - ' / z  ~ f ( k ) e  -2'~ijk/r, 
k = l  

j = l  . . . .  , r  

The matrix elements of  Fr are 

(F~)jk = (Fre k, ej) = r-I/2e2"~ijk/r, i, j = 1 . . . . .  r 

Let A = diag(a I . . . . .  at),  a i ~ R, j =  1 . . . . .  r, be a real diagonal matrix. 
We think of  A as an observable for some r-dimensional  quan tum system. As 
usual, the eigenvalues a I . . . . .  a r of  A are the measurable  values of  A and the 
corresponding eigenvectors e~ . . . . .  er represent the vector states in which 
these values are precisely attained. The A-motion observable is defined as 
PA = F~*AF~. The reason for this nomencla ture  is because PA generates a 
one-parameter  unitary group V ( t ) = e  itPA which t ransforms states with 
precise A values among  themselves at certain discrete t 's .  More  precisely, 
V(2~rj/r)e k = ek+j (mod r)  for j =  1,2 . . . . .  r. The matrix elements of  P,4 are 

( PA) j,  = r- t  ~ a, e2'~in(k-j)/r, 
n = l  

j , k = l , . . . , r  

The corresponding A-energy observable is defined by H A = aPA 2, where a is 
a constant  to be determined f rom physical considerations.  The matrix 
elements of  H,4 are 

r 

= an2e 2'rin~k-j)/r, j ,  k,=  1 . . . .  , r  
r n=l  

The A-energy observable generates the dynamical group UA(t)= e -i'H.~, 
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t ~ R. The matrix elements of UA(t) are 

[vA(t)]j  = r - '  
r 

Y'~ expi[-c t ta .  2 + 2r  j ) / r ]  
n = l  

If the system is initially in the state e k (A has value a k )  , then the 
probability that the system will be in the state ej (A has value aj) at time t is 

Pkj( t ) = l(uA( t =l [ gA( t ) ] jkl 

= r - 2 ( r + 2 . , > , , = , ~  c o s [ a t ( a m 2 - a n 2 ) + 2 r r ( n - m ) ( k - j ) / r ] )  (1) 

Important information about the system is also given by the average A value 
at time t given the initial state e k. This is given by the formula 

( A ) k ( t ) = ( A U A ( t ) e k , e k )  = ~. ajl[UA(t)]jkl 2 
j = l  

(2) 

3. THE QUARK SPACE 

The basic quark space is V = C 72. We refer the reader to Gudder  (1982) 
for some motivation for this assumption. We may view V as the tensor 
product of five spaces V=VI|174174174 where V I = V 2 = C  3 and 
V 3 = V 4 = V 5 = e 2. We call V 1 the color space, V z the generation space, V 3 the 
charge space, V 4 the type space, I" 5 the spin space, and V2| 3 the flavor 
space. If (el ,e2,  e3) and ( f l , f 2 )  are the standard bases for e 3 and C z, 
respectively, a basis for V is given by the set of quark vectors 

+ ( i , j , k , m , n ) = e i | 1 7 4 1 7 4 1 7 4  i , j = l , 2 , 3 ; k , m , n = l , 2  

The usual quark classification scheme is given in Table I. Each quark 
also has one of the three colors r, y, b and spin up ( 1' ) or spin down ( 3, ). 
Our basis vectors correspond to this classification scheme as follows: 

~ (1 ,1 ,1 ,1 ,1 )  = dr 1' 

~ (1 ,1 ,1 ,2 ,  1) = d~ 1" 

~(2 ,2 ,2 ,  1,2) = Cy 
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T A B L E I  

Flavor Generation Charge Type 

d 1 - I / 3  Particle 
u 1 2 / 3  Particle 
s 2 - 1 /3  Particle 
c 2 2 / 3  Particle 
b 3 - I / 3  Particle 
t 3 2 / 3  Particle 

d 1 I / 3  Antiparticle 
ff 1 - 2 / 3  Antiparticle 

2 I / 3  Antiparticle 
g 2 - 2 / 3  Antiparticle 

/7 3 1/3  Antiparticle 

f 3 - 2 / 3  Antiparticle 

The following observables (operators) on V will be important in the 
sequel. The color observable C is defined by C = diag(c I, c 2, c3) |174174174  
where c,, c2, c 3 ~ R are determined later. The color-anticolor observable 
C =  diag(q,  c 2, c3)|174174 - 1)| The flavor observable F = I| 

diag(fl ,  f2, f3, f4, fs, f6 ) |174 I where again fj ~ N, j = 1 . . . . .  6, are determined 
later. The charge observable K =  I | 1 7 4 1 7 4 1 7 4  
The spin observable S = I | 1 7 4 1 7 4 1 7 4  1/2). The generation ob- 

servable G = I |  diag(g I, g2, g3)|174 diag( 1, - 1)| where gi, g2, g3 ~ N are 
determined later. The basis vectors qJ(i, j ,  k, m, n) are eigenvectors for the 
above operators with eigenvalues given by the diagonal matrix elements. It 
will frequently be convenient to suppress the identities in the above opera- 
tors. In this case, we shall place a above the operator; for example, 

= diag(cl, c 2, C2). 

4. THE COLOR OBSERVABLE 

In this section we determine the eigenvalues Cl, C2, C3 of the color 

observable. Clearly, it suffices to consider the operator C on C 3. We now 
make the fundamental assumptions that the c f s  are distinct and that (~ is 
traceless; that is, c~ + c 2 + c 3 = 0. The reason for the first assumption is that 
the three colors are distinct. The reason for the second assumption is that 
observed particle compositions of quarks (in particular, baryons) are "color- 
less." Since a baryon is composed of three quarks, each of a different color, 
this assumption gives a total color quantum number zero. 
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We now consider  color motion.  The  color dynamics  Uc(t  ) predicts  that  
a free quark  has a tendency to change color. In fact, an appl icat ion of 
equat ion (1) gives 

P,I ( t )  = �89 + 2 [cos at (c2 2 -- c 2 ) + cos ~xt ( c3 2 - c 2  2 ) + cos el  (c3 2 -- c, 2 ) ] 

It  is clear that  Pl~(t)  is periodic between 0 and  1 and that  Pt~(to) = 1 if and  
only if each of  the three cosines has value 1. We  mus t  then have ato(C22 - 
ci 2) = 2~rrn, ato(C32 - c22) = 2~rn, ato(C32 - cl 2) = 2~rp, where m,  n, p are 
integers. We now assume that  the per iod is a min imum.  The  dist inctness of  
the cj's then requires that  m = n = 1, p = 2 (or a pe rmuta t ion  of these)�9 
Solving these equat ions  we find that  within a mult ipl icat ive constant ,  c~ = I, 
c 2 = 1 -~-~-, c 3 = - ( 2  Jr $~-). The  per iod then becomes  t o = 2~r(2r - 3 ) / 3 a ,  
where  we de termine  a later (using this later value of a gives to -= 1.8 x 10 -23 
sec). 

The  graph  of P i t ( t )  is given in Figure 1. The  graphs  of Pl2(t  ) and 
Pi3( t )  are the same  except  for a difference in phase.  We  thus see that  a free 
quark  experiences a periodic color change with per iod t o given above.  

If  a quark  is in the state e t (red) at t ime t -- 0, then apply ing  equat ion 
(2) give the expected color value at t ime t: 

3 3 
(C), ( t )  = E  jlUc(t)j,I == E cjPu(t) 

j= l  j= l  

= c i P ,  i ( t ) + c 2 P , 2 ( t  ) -  (c t + c 2 ) [ 1 - P , , ( t ) - P i 2 ( t ) ]  

= (2c,  + c 2 ) P i , ( t ) + ( c ,  + 2 c 2 ) P , 2 ( t ) - ( c ,  + c2) 

O 

~ ,  (,t) 

�9 - , ' r 

Fig. I. Graph of P~(t). 
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It is easy to check that 

1 pOp 1 / ' t op  1 
toJo , , ( t )d t= toJo ' 2 ( t ) d t = 3  

Hence. the average color value over a single period becomes 

!0f0 1 1 (c I +2c2)_ (c ' + c2 ) = 0 '~ dt = -~ (2c, + c2)+ -~ 

We close this section by computing the color motion observable P( and 
the color energy observable aP~ 2. According to the formula given in Section 
2 we have 

(P()+k = (1/3) E C. e2"i"<k-j)/3, 
n = l  

j , k = l , 2 , 3  

It follows that 

1 r 1 
0 1 2 i - 1 -  2 _ - 5 - + 2  i 

r 1. - 1---~- + 71 0 1 7~ 1 2 2 i 

- 1  ~ 1 v~- 1 �9 -~ ~i - 1 -  --~- + -~i 0 

Similarly, 

Hence, 

3 
Ot 

(H~)#  = 3 E c. 2ez'~i"(k-j)/3, j .  k = 1.2.3 
n = I 

3 + r  + 1)i 4+ 2v~- ~ 

3 + f3- + (--~- + 1) i 4+ 27~- 

3 + f ~ _ ( _ ~ _  1)i 3 + f ~ + ( _ ~ _  1)i + + 

3 + 7 ~ - + ( - ~  + 1)i 

2 +r + 1 ) / 2  

4+ 2~/3 

We then assume that Pc = P( |174174174  and H c = H( |174174174 
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5. THE QUARK TENSOR SPACE 

The quark tensor space is defined as 

T V =  c 

= C  ~ V ~ V | 1 7 4  �9 �9 �9 

The normalized vectors in T V  represent the vector states of all possible 
combinations of quarks. For ~ ~ T V  we write ~ =  ~ 0 ~ @  --- , where 
~, ~ V | Define the projection P,: T V ~  T V  by 

P , ~ = 0 ~ 0 ~ . . . ~ , ~ 0 ~ . - - ,  n = 0 , 1  . . . .  

If A" V--", V is an observable we define I '(A): TV---, T V  by 

F (A)  = I e A r 1 7 4  + I | 1 7 4 1 7 4  + I | 1 7 4  + I | 1 7 4  . . .  

= 

We call ~ e T V  a color vector if F (C)P .~  = F'((~)~,, = 0 for n = 2,3,4 . . . . .  
Except for the quarks themselves, normalized color vectors represent vector 
states of "colorless" particles. The set of color vectors forms a closed 
subspace of T V  and is denoted by 

( r V ) c  = C ~ V ~ V c 2 ~ V c 3 ( ~  " ' "  

where 

vc ~ = = 0) 

Let ~ =  ~l|  �9 �9 �9 |  ~ Vc ~, n >1 2, where the ~j 's are quark vectors. If 
C~kj = - C~k we call (~j,  ~k) a mesonpair in ~,. Of course, in a meson pair 
one of the vectors represents_a quark and the other an antiquark. If ~i, ~kj, 
and ffk represent quarks and C(q~ i + ~k/+ ~k) = 0, then we call (_~i, q~j, ~k) a 
baryon triple in ~,~. If Lki, ~bj, and ~k represent antiquarks and C(~ki + ~j + 
~kk) = 0, then we call ~i, ~kj, ffk an antibaryon triple in q~. 

Theorem. Let ~ ~ TV. Then ~ ~ ( T V ) c  if and only if ~,, is a linear 
combination of terms each of which is composed of m meson pairs, 
p baryon triples, and q antibaryon triples (m, p, q >/0 depend on 
the term, 2m + 3 p  +3q  = n), n = 2,3 . . . . .  

Proof. Sufficiency is clear. For necessity, let ~, ~ ( T V ) c  and suppose ~p~ 
is a product of quark vectors ~ , = ~ t | 1 7 4  ~. Let C~kj=aj~/ ,  
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j = 1 , . . . ,n .  Since F " ( C ) r  = O, we have E~= l aj = O. We can assume without  
loss of generali ty that  tk~ . . . . .  4'k represent  quarks  and ~Pk+l . . . . .  ~ ,  represent  
ant iquarks.  We can also assume without  loss of  general i ty that  ak+ ~ = - a j  
f o r j  = 1 . . . . .  m and some m >t O. Then  (@j, q~k+j),J = 1 . . . . .  m, form m meson 
pairs.  We now consider  the remaining quark  vectors  +, ,+l  . . . . .  tPk; 
q~k+,,+ i . . . . .  q~,. We then have 

k 

a j+  a j=O 
j = m + l  j = k + m + l  

Let  p~ be the n u m b e r  of  c, 's, i = 1,2, 3 (the c~'s are the color  eigenvalues) and 
q~ the n u m b e r  of  - c ~ ' s ,  i = 1,2,3, a m o n g  these a / s .  Not ice  that  qg = 0 if 
pi:t:O, i = 1,2,3. 

Case 1. pl,  p2, P3~O. Then  q l = q 2 = q 3 = O  and p l + p 2 ( l + v r 3 - )  - 
p 3 ( 2 + r  It  follows that  p l + p z - 2 P 3 = O  and p 2 - P 3 = 0 .  Hence,  
P l = P 2 - - P 3 -  We then have m meson pairs,  P l b a ryon  triples, and 0 
an t iba ryon  triples. 

Case 2. pl  = P2 = P3 = 0. As in Case 1, ql = q2 = q3. We then have m 
meson  pairs,  qt an t iba ryon  triples, and 0 baryon  triples. 

Case 3. pt =0 ,  P2, P3 =0 .  Then q2 = q 3 = 0  and p 2 ( l + v ~ - ) -  
p3(2 + r = 0. It follows that  ql = 0 and P2 - 2 P 3  = 0, P2 - P3 = 0. Hence,  
P2 = P3 = 0, a contradict ion.  

Case 4. P2 = O, P l, P3 ~ O. As in Case 3, this is impossible.  
Case 5. P3 = 0, P i, P2 ~: 0. As in Case 3, this is impossible.  
In Case 1, the compos i t ion  consist ing of m meson  pairs and p~ ba ryon  

triples is only one of possibly m a n y  composi t ions .  In general, the m meson  
pairs can be redistr ibuted to fo rm m 0 meson  pairs (m o < m),  Po ba ryon  
triples, and Po an t ibaryon  triples, where m 0 + 3Po = m. This would result in 
a total of  m o meson  pairs, P0 +Pm baryon  triples and Po an t iba ryon  triples. 
Similarly, for Case 2, in general we would have m o meson  pairs, P0 ba ryon  
triples, and P0 + q~ an t ibaryon  triples. 

More  generally, suppose  r ~ Vc ~ and q~, = E~=~ bjxj ,  where bj * 9 ,  Xj'S 
are p roduc t  quark  vectors.  Then  each Xj is an eigenvector  of  I " ( C )  with 
eigenvalue ~,j, say. Hence,  

o = = E %X,xj 
j = l  

Since the Xj'S are linearly independent ,  we have )~j = 0, j - I . . . . .  r. Then  as 
before  Xj consists of  m meson  pairs, p ba ryon  triples, and q an t iba ryon  
triples, m, p ,  q >~ 0, 2m + 3p + 3q = n. �9 
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Corollary. If ~2 ~ Vc 3, then ~2 is a linear combination of meson 
pairs. If q~3 ~ Vc 3, then q~3 is a linear combination of baryon triples 
and antibaryon triples. 

It appears that the following color condition is a law of nature. Of the 
normalized vectors in TV only the color vectors are observable physical 
vector states. It follows from the color condition and the above theorem that 
quarks can only combine as mesons, baryons, antibaryons, and collections 
of these three. 

6. B A R Y O N  S P A C E  

We call Vc 3 the baryon space. Certain unit vectors of Vc 3 represent 
ground states (zero orbital angular momentum) of baryons and antibaryons. 
A basis for Vc 3 is the set of quark product vectors 

~(i ,  j ,  k, m, n)@ff (i', j ' ,  k', m', n')@~ (i", j " ,  k", m", n") 

where i, i', and i" are distinct and m = m '=  m". The dimension of Vc 3 is 

dimVc 3 = ( 3 x 3 x 2 • 2 1 5 2 1 5 2 1 5 2 1 5  1 •  (1 • 2 1 5  1 • 

= 20,736. 

Half of this dimension represents baryons and the other half represents 
antibaryons. Since there is a one-to-one correspondence between baryons 
and their corresponding antibaryons, we shall only consider the 10,368 
dimensional space of baryons (m = I). Since a baryon is "colorless," there is 
no physical way of distinguishing between the six possible color permuta- 
tions. For example, 

d/(1,j ,k, l ,n)|  j ' , k ' , l ,n ' ) |  j " , k " , l , n " )  (3) 

and 

~(2, j ,k, l ,n)|  j ' ,k',l,n')| j " , k " , l , n " )  

are physically equivalent. Hence, we need only consider the 1728-dimen- 
sional subspace spanned by the vectors in equation (3). If we disregard spin 
which can be treated in the usual way, we obtain 1728/8 = 216 baryon 
vectors. 

In order to obtain actual physical states, these baryon vectors must be 
properly symmetrized (S), antisymmetrized (A), or mixed symmetrized 
(M). It turns out that there are 56 S states, 20 A states, and 140 M states 
(Close, 1979). A natural classification of baryons can be given in terms of 
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symmetrization and generation. We define the generation observable G to 
be 

G = I |  diag( - 5 /3 ,  - 2 / 3 , 7 / 3 )  |174 diag(1, - l) | 

We chose these numbers since they make G traceless and give the smallest 
integer generation numbers for baryons and mesons. The baryon generation 
observable is F3(G) and the generation number of a baryon is the eigenvalue 
of that baryon under I'3(G). Tables II, III, and IV display this classification 
where each baryon is represented by its quark composition. In Table IV 
there are four mixed states for each baryon at the 0 generation level and two 
or four mixed states for each baryon at the other levels (Close, 1979). The 
well-known mixed octet and symmetric decuplet are underlined in Tables 
IV and II, respectively. The symmetric states have spin 3 /2  and the 
antisymmetric and mixed states have spin 1/2. 

TABLE II. 56 Symmetric States. 

Generation 
number Quark composition 

7 bbb bbt bt t  ttt 

4 sbb st t  cbb ctt sbt  cbt 

3 dbb dtt  dbt ubb utt ubt 

1 ssb sst ccb cct scb sct 

0 dcb dct dsb dst ucb uct , usb 

- 1 ddb ddt  uub uut dub dut  

- -  2 SSC S$S $CC CCC 

- 3 dcc dss uss ucc dsc  usc 

- 4 ddc dds uus dus uuc duc 

- 5 ddd ddu duu uuu 

USt 

TABLE III. 20 Antisymmetric States 

Generation 
number Quark composition 

4 sbt  cbt 

3 dbt ubt 

1 scb sct 

0 dcb dct dsb dst ucb 

- 1 dub dut  

- 3 dcs ucs 

- 4 dus duc 

uct usb ust 
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TABLE IV. 140 Mixed States 

957 

Generation 
number  Quark composition 

7 bbt(2) btt(2) 
4 sbt(4) sbb(2) ctt(2) cbb(2) stt(2) cbt(4) 
3 dbt(4) dbb(2) dtt(2) ubb(2) utt(2) ubt(4) 
I sct(4) ssb(2) sst(2) ccb(2) cct(2) . scb(4) 
0 dcb(4) dct(4) dsb(4) dst(4) ucb(4) uct(4) usb(4) 

- I  dut(4) ddb(2) ddt(2) uub(2) uut(2) dub(4) 
- 2 ssc(2) scc(2) 

- 3 usc(4) ucc(2) dss (2) uss (2) dcc(2) dsc(4) 

- 4 duc(4) ddc(2) dds (2) uus (2) uuc(2) dus (4) 

- 5 ddu (2) duu (2) 

ust(4) 

7. MESON SPACE 

We call Vc 2 the meson space. Certain unit vectors of Vc 2 represent 
ground states of mesons. A basis for Vc 2 is the set of quark product vectors 

~k(i, j ,  k, m, n)@~k (i ' ,  j ' ,  k ' ,  m', n') 

where i = i', m = m'. The dimension of Vc 2 is 

d i m V c  2 = (3x3x2x2x2)x (1 x3x2x 1 x2) = 864. 

Since i = 1,2,3 are physically equivalent, we need only consider the 288- 
dimensional subspaces spanned by the vectors 

~ ( 1 , j , k , m , n ) X ~ b ( 1 , j ' , k ' , m ' , n ' ) ,  m * m '  

TABLE V. 36 Symmetric States 

Generation 
number  Quark composition 

4 
3 
1 

0 

- 1  

- 3  
- 4  

t i  tb b{ bb 

bd bfi td tff 
bg b? tg t? 

ca sd sff cfi 

dff ud uff s~ 

d? dg ug u? 

s6 s; cG d 
dE di  ub u[ 

dd s? c~ c~ 
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I f  we disregard spin we have 288 /4  = 72 meson vectors. These may be 
symmetrized or antisymmetrized giving 36 symmetric states and 36 antisym- 
metric states. The generation number  of a meson is the eigenvalue of that 
meson under I '2(G).  Table V displays the symmetric states classified 
according to generation number, where each meson is represented by its 
quark decomposition. The well-known meson nonet is underlined. The 
antisymmetric classification is similar. The symmetric states have spin 0 and 
the antisymmetric states have spin 1. 

8. T H E F L A V O R  OBSERVABLE 

We now determine the eigenvalues, f ,  . . . . .  f6 of the flavor observable F. 
We do this using the approximately known masses of various quarks. Some 
of these masses can be estimated using tables such as Table VI. Using Table 
VI and estimates for b and t mesons we obtain the rough approximations 
given in Table VII. 

We assume that the free quark Hamiltonian has the following form: 

H O) = etPc 2 + ),F 2 (4) 

Instead of viewing H o) as the energy observable, it is more convenient to 
regard it as the equivalent mass observable. Equation (4) states that the 
mass of a quark is the sum of its color energy mass and its " res t"  mass. The 
color energy mass results from the fact that the quark's color is continually 

TABLE VI. Particle Masses 

Particle Quark composition Mass, MeV 

p uud 938 
52+ uus 1189 
i/, c? 3100 

TABLE VII. Quark Masses 

Quark Mass, MeV 

d 320 
u 320 
s 500 
c 1500 
b 4000 
t 16000 
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changing,  giving rise to a kind of "k ine t i c"  energy, and  the " r e s t "  mass  is 
the mass  a quark  would have if its color were not  changing. The  basic 
assumpt ion  in equat ion (4) is that  the rest mass  is p ropor t iona l  to the square  
of  the flavor. If  tk ~ V is a quark  vector  state, the expected mass  in state q, 
becomes  

Not ice  that  the diagonal  e lements  of Pc 2 are equal  and let 

a = a ( f f c~r ,  r )  = a ( f f 2 y ,  y )  = a(-Pc2b, b )  

We then have the following approx imate  formulas:  

320 = ( H O ) d , d )  = a + y f 2  

320 = ( H t l ) u ,  u )  = a + yf2 2 

500 = ( H(I)s ,  s )  = a + yf32 

1500 = ( H(I)c ,  c )  = a + yf42 

4000 = ( H( l )b ,  b )  = a + yf52 

16000 = ( H i n t ,  t )  = a + 7f62 

N o w  the mass  of  the *r ~ meson,  *r ~ = uff, is approx ima te ly  135 MeV. 
Since the masses  of  u and ff are abou t  320 MeV, this indicates that  about  
255 MeV f rom the quark  and also the ant iquark  is conver ted  into q u a r k -  
an t iquark  interact ion energy which we assume consists of  color energy. The  
remaining  65 MeV of the quark  and ant iquark  cont r ibute  to the meson  
mass.  For  this reason, we assume that  a-- -255,  ~,-= 65, and f~ = f z - - -+-1 .  
Solving the remaining  four  equat ions  gives 

f3 -= [ ( 5 0 0 -  255) /65 ]  ,/2 = +_ 1.94 

f4 -= [( 1500 - 255) /65 ]  ,/2 = + 4.38 

f5 - [(4000 - 255 ) /65 ]  ,/2 = + 7.59 

f6 -= [ ( 1 6 0 0 - 2 5 5 ) / 6 5 ]  ' /2 = -+ 15.56 
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The above equations do not determine the signs of the fi 's, i = 1 . . . . .  6. 
Also, these numbers are only rough approximations. Our later mass for- 
mulas give the best agreement if we choose the signs + ,  + , - , - ,  + ,  + .  
Moreover, assuming that nature gives a regular pattern we postulate that 
f l  = 1 ~2, f2 = 1, f3 = - 2, f4 -- - 4, f5 = 8, f6 = 16. We have assumed that 
f l  = 1 ~ to take account of small mass differences between particles contain- 
ing d quarks and those containing u quarks. 

We now compute the flavor motion observable PF" We assume that PF 
commutes with the generation observable G; that is, generation is a constant 
of the flavor motion. This is indicated by the fact that quarks seem to prefer 
to stay in their own generation. In flavor space, G has the form G = 
d i ag ( -  5 /3 ,  - 5 /3 ,  - 2 /3 ,  - 2 /3 ,  7/3,  7/3) .  For Pr to commute with G we 
conclude that Abe has the form 

/5 F = F2*diag( 1 ~ ,  1 ) F 2.  F 2*diag( - 2, - 4) F 2 ~ F 2*diag(8, 16) F 2 

A simple computation gives 

e v  ~ 

0 0 0 0- 

1 1~  0 0 0 0 64 

0 0 - 3  - 1  0 0 
0 0 - 1  - 3  0 0 
0 0 0 0 12 4 
0 0 0 0 4 12 

9. BARYON HAMILTONIAN 

In Section 8 we proposed a free quark Hamiltonian H o) given by 
equation (4). In this section we shall propose a baryon Hamiltonian H (3). By 
computing the mass expectations of known baryons in terms of this Hamil- 
tonian, we shall determine the two constants in equation (4) as well as four 
others appearing in H a). We then compare our predicted results with other 
baryon masses. Since H (3) is the Hamiltonian for three interacting quarks, 
we should expect some interaction terms which do not appear in H o). 

Our proposed baryon Hamiltonian is 

n o )  = + + Pc|174  c + I|174 2) 

- 6(F|174 + F|174 I | 1 7 4 1 7 4 1 7 4  vK|174 
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The first term is a color energy term, the second is a color mot ion  
interaction between pairs of  quarks, the third is a rest mass term, the fourth 
is a flavor interaction between pairs of  quarks, and the fifth and sixth are a 
flavor interaction and a charge interaction, respectively, among  all three 
quarks. The mass expectation for a baryon  in the vector state q, is given by 
(/4~3~q~, ~>. 

By comput ing  the mass expectations for the six baryons  n, p,  E +, 
.~0, A++, ~ -  we obtain the following values for the constants:  

a = 35.50, ~ = 11.56 
fl = 26.46, g = 2.33 

y = 58.77, r = 7.19 

Using these values for a and ~, we obtain the following quark masses: 

(HO)d, d) = a(Pc2d, d)+ y(F2d, d> 

(HO)u, u) 

( HO)s, s) 

(HO)c,c> 

(HO)b, b) 

(H(l)t,t) 

= 265.05 + 62.50 = 327.55 

= 265.05 + 58.77 = 323.82 

= 265.05 + 235.08 --- 500.13 

= 265.05 + 940.32 = 1205.37 

= 265.05 + 3761.28 = 4026.33 

= 265.05 + 15045.12 = 15310.17 

Instead of  solving the six ba ryon  equations we shall work backwards  and 
show that the six constants  give the correct mass values. 

We first consider the neutron,  which is given by the mixed state 

, ( 2 ) - ' / 2 (  = U r ? |  $ |  b + - dy ~, | |  b ,1,) 

The neutron mass expectation becomes 

(H(3)n, n )  = 3a(PcZu~ $, u~ $ ) 

+ g [ ( F 2 u r  $,u~ $>+(FZdy,~,dyJ,>+(F2ab J,,ab J,>] 

- 8[(Fu, $, u, "r)(Fd.v J,, dy J,>+(Fu r "r, u~ $> 

x (Fd b ,l, db $ ) + (Fdy $, dy $ )(Fd b $, d b $ > 
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- # ( F u  r'~, u r $ ) (Fdy +,dy $ ) ( F d  b +,d  b +) 

- v(Ku r $, u, $ ) (Kdy +, dy + ) ( K d  b J,, d h ], ) 

= 3a([Jc2r, r ) +  y [(P2u,  u )+  2(P2d, d)] 

- 8 [2 (Pu ,  u)(Pa,  a)  + (Pd,  a ) : ]  

- #(Pu, u) (Pa,  d)  = - v ( k u ,  u ) ( g a ,  d)  = 

= 3(4+ 2Vc3-)a + [I + 2(1~)2] y - [2(~)+(1 ~)2] 8 

_ ( 1 ~ ) 2 # _ ( ~ ) ( _ ,  2 3) v=939.55 

Similarly, the proton 

p =  (2)-'/2(dr T |  + | + -- Ur + | ~ | + ) 

has mass expectation 

(H(3)p, p ) =  3(4+ 2r + [2 + (l~z)2] y -  [2(~)+ 118- (1~)# 

- ( ~ ) : ( - ~ ) , ,  

= 938.23 
The ~ § baryon 

y~+ = ( 2 ) - ' / : ( s  r ~ | $ | + - uy $ | ~ | + ) 

has mass expectation 

(H~ +, Y.+ ) = 3(4+ 2v~-)a + 6~/+ 38 + 2# - ( -  �89 

= 1188 
The .--0 baryon 

~-o= (2)-'/2(u~ $ | + | - s, $ | "~ | ) 

has mass expectation 

(HO)-o , -o )=3(4+Zg~- )a+9y_4  # -  _2(_3) ,  2v 

=1314 
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The A + § baryon is given by the symmetric state 

A++=(6)-1/2(UrT|174 +Ur~|174 +Uy~|174 ~ 

+ Uy Z t~Ub ~ •Ur ~ + Ub ~ @Ur T ~Uy T + U b ~ ~Uy? @U r ~) 

The A + + mass expectation becomes 

2 
<H(3)A ++, A ++ ) = 3a<Pc2r, r )  + 3fll<Pcr, Y>I + 33, - 33 - # - ( 2 ) 3 / )  

1 2 = 3(4+ 2r + 3[1 + r  ~i1/3 +3r -33  -t~ _ ( ] ) 2  

= 1228 

Similarly, the ~ -  = sss baryon has mass expectation 

< H ( 3 ) f l  - ,  ~ -  ) = 3(4+ 2~/3-)a + 311 + ~/3-/2 + �89 

+ 12- / -  123 + 8# - ( - �89  

= 1677 

All of these values are within 0.3% of known experimental values. (The 
accurac~y can be improved by determining the constant values to more 
significant figures.) The accuracy is maintained for the baryons 5-0= 
uds, Y.- = dds, "--- = dss, A + = uud, A ~ = udd, A -  = ddd: 

(H(3)Z~ ]g ~ = 3(4+ 2~fJ-) a + [5 + (1 ~)2] 3, + ( 2  + 1 ~ ) 3  + 2(1 ~)/~ 

t 2 

=1191 

(H(a)Y-,  Y-  ) = 3(4+ 2vt3)a + [4+ 2(1~)2] y + [ 4 ( 1 ~ ) - ( 1 ~ ) 2 ]  3 

I 2 + 

= 1 1 9 6  

(H(3)E - ,  "-- > = 3(4+ 2v~-) a + [8+  (1 ~z)2] y + [ 4 ( ~ 1 - 4 ]  3 - 4 ( 1 { ) #  

I 3 , 

= 1320 
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(HO)A+, A + ) =  3(4+ 27"3) a + 311 + ( 5 / 2  + �89 + [2 + v 

- [ 2 ( ~ 2 ) + 1 1 3 - ( 1 ~ ) / ~ - ( 2 ) 2 ( - � 8 9  

= 1234 

~HO)A ~ A ~ = 3(4+ 2v~-) a + 311 + 7~-/2 + �89 + [1 + 2(1 ~2)2] 7 

- [ 2 ( ~ 1 +  (1~)2] 3 - (1~12/~ - ( ~ 1 ( -  �89 

= 1236 

~HO)A -,  A-  ) = 3(4 + 2vc3-) ct +311 + ~/3/2 + �89 + 3(1 ~ ) 2 y  - 3(1 ~2)23 

I 3 
- (1~2)3/~- ( -  ~) u 

= 1240 

The color symmetrization for the symmetric states A ++= uuu and 
f i - =  sss were straightforward. However, the proper color symmetrization 
for other symmetric states is not so clear. We shall symmetrize relative to 
color as follows. If all three quarks are in the same generation, completely 
symmetrize relative to color. If they are not all in the same generation, 
symmetrize only the ones in the same generation as in the following example 
of ~.* + = uus (we have deleted the normalization): 

~..*+ ~ UrUy$ b + UyUrS b + IdrUbSy + ldbldrSy + UbSrldy + UySrU b + UrSbUy 

+ UySbU r + SyldrU b + SyUbU r + SrUbUy + SrUyU b 

With this color symmetrization, our mass expectations are again within 0.3% 
of the experimental values: 

(H~ * +, ~.* + ) = 3(4 + 2v~)ot + 211+ v~-/2 + �89 + 67 + 33 

+ 2 # -  ( -  �89 

= 1385 
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In a similar way, for E *~ = uds, E*- = dds, .-.o = uss, ---*- = dss, we obtain 

(H(3)y.o, y . o )  = 1388 

( H  (3) y.* -, ~* -  ) = 1393 

( H  O)--*~ -Z*~ = 1512 

(H(3)~ *-,  "--*- ) = 1518 

For A, the antisymmetric uds, we first antisymmetrize relative to flavor 
to obtain 

uds + sud + dsu - [ usd + sdu + dus ] 

We now completely symmetrize the first three terms relative to color and 
symmetrize the bracketed term as follows: 

UrSyd o + UbSrdy + UydbG + SrdbUy + sbdyUr + sydru b 

+ drues b + dbu~Sy + dyurSb 

We then have 

(H(3)A, A) = 3(4+ 2r + (2~)11 +r189 + [5 + (1~2)3] y 

+ [ 2 + ( 1 ~ ) ] 3  + 2 ( 1 ~ ) / ~ - ( ~ ) ( - � 8 9  

= 1403 

For A ~ we take the mixed state 

(5 ) -  ./2( u, 1' | ~ | + - Ur 1' |  ~ | ~ - dy ~ | u, 1' | 

+ ~ ~ | ~ | --Sb ~ | | ~ ) 

We then have 

( H ~  ~ A ~ = 3(4+ 2 ~ - ) ~ - 4 1 1  + ~ / 2  + �89 + [5+ (l~z)2]y 

+ [2+(1~2)]3 + 2 ( 1 ~ ) # - 2 ( - � 8 9  ' 

=1112 
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I0. M E S O N  H A M I L T O N I A N  

As in the baryon Hamiltonian, the meson Hamiltonian H (2) has six 
terms. However, the counterpart of the I tF |174  term is unnecessary and 
as discussed in Section 8, the F2(Pc 2) term vanishes due to a quark-anti-  
quark color energy cancellation. These terms are replaced by two quark-an-  
tiquark interactions. We propose the following meson Hamiltonian 

H (2) = 6f l (Pc|  y F 2 ( F 2 )  - ~ F |  �89174 + ~k(PIFI| 

+ r l (F+ I ) |  I ) ( S |  I |  

where A = 29.33 and ~ = 4.5. 
The operator M is independent of color and has the form M = I|174 

where I is the identity on the color space and M is a diagonal 288 • 288 
matrix. Instead of writing out the 288 nonzero entries of M, we use the 
following condensed notation. Let qi 1' represent a quark with flavor f,, 
i = 1 . . . . .  6, and spin up. We have similar definitions for qi $, ~/i $, and gL +. 
Define M by 

lVlqi "~ | $ = h ( i ,  j )q ,  * | $ 

)Vlqi ,~ | ~ = h( i, J)qi ~, | 

~t#i 1' |  J, = x ( i ,  j)#, "~ | 

)(477i $ | T = X( i, j)Yl, J, | "r 

and 

-g/q; 1' | 1' = h ' ( i ,  j )q ,  $ | "r 

mq, 1, | ,l = X'(i, j )q ,  ~ |  

)~1~1, "~ | q j $ "L ~k ' ( i , j ) ~l i "r | q j * 

)~177~ J, | J, = X'( i, j)Yk $ | $ 
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where ~(i, j )  and X'(i, j )  are the following matrices: 

967 

[~k(i, j ) ]  = 

1 1 2 9 _5 _9 
8 8 

1 1 2 9 g5 89 
2 2 2 4 _5 _9 8 8 

9 9 4 4 ~8 _98 
5 5 5 5 5 9 

8 8 8 ~ 

9 9 9 9 9 _9 
8 8 8 8 8 8 

[x ' ( i ,  j ) ]  = 

9 17 2 2 0 4 i--g l-g 
2 2 0 4 9 iv 

16 16 

9 17 0 0 0 2 16 16 
4 4 2 3 9 17 

16 16 

9 9 9 9 9 17 
/ 6  16 16 16 ~ "~  

17 17 17 17 17 17 
-f6 16 16 16 ] '6 T'6 

The mairix elements can be defined in terms of the numbers fl = 1, f / =  2 i- 2, 
i = 2 . . . . .  6, which are essentially the moduli of the flavors, as follows: 

~ [max(f,., ~ )  +2 ] /16 ,  

X(i, j )  = ~ max(fi ,  f/) +5, 

~ max(f,., f j) ,  

if i o r j  >/5 

if i = 4 and j  ~< 2, o r j  = 4 and i ~< 2 

otherwise 

X'(i, j )  = 

[max(f/ ,  f/) + 1]/16, i f i o r j > ~ 5  

i +  j - 5 ,  if 3 ~< iandj~< 4 

•(i, j ) + l ,  i f X ( i , j ) = l  

X(i, j ) - 2 ,  i f X ( i , j ) = 2  

max( f/, fj),  otherwise 

In the following, we list the quark composition followed by the mass 
expectation for the mesons. These values fall within 1% of the experimental 
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values. 

Gudder 

,frO= 

(HO)~o, ~o) = 

qT ---~ 

(H~2)~r - ,  'n'- ) = 

q'g+~ 

(H<2)ir +, ~r + ) = 

K + = 

( H~E)K +, K + ) = 

K - =  

( nt2)K -,  K -  ) = 

K o =  

(Ht2)K ~ K ~ = 

( 2 ) - ' / 2 ( G *  | + fir,[ |  

2v-8+(lh)2a 
(2)-l/2(dr * | + Ur~ | 

[Cl ) 2+ 1]v-/1 )8 + tl'):x 
+ � 8 9 1 8 9  140 

ff- 

140 

(2)-1/2(Ur * | "~ + Sr "[ | *) 

5y + 23 + 6(16~) ~. + �89189 = 496 

K.+ 

496 

(2)- ' /2(  dr * | * "{- Sr ~' | ) 

[ (1~)  2 + 4 ] y  + 2(I ~-2) 3 

+6(1--~)X + � 8 9 1 8 9 1 8 9  500 

~ '=  (2)-~/2(Sr* | +gr  $ |  

(H~2)'O ', 7') = 8y - 4 8  + 18h + � 8 9  �89189 v = 953 

X =  ( 2 ) - ' / 2 ( G  ? | ~, "+-Or ~, |  ) 

(n~Z)x, x )  = 32y - 163 + 36~. + �89  3)v = 2750 

o ~ = ( 6 ) -  i /2(ur $ | fir T + Uy $ | ~y $ + U b ? | Ub * 

--Ur* | -- Uy * | * --Ub * | 

(HtE)pO, pO) = 611+ v~-/2 + �89 + 2y - 8 

+2 (1~)2X + 4 " q + � 8 9  776 
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p+ = ud(color symmetrization as in p0, similarly for remaining mesons) 

(H<2'p +,p + ) = 6 l l  + f 3 / 2  + �89 + [ (1~)  2 + 1]" / -  ( 1 ~ ) 8  + 2(1~)2A 

+ 2 ( 2 ~ ) ~ + � 8 9 1 8 9  

(n(2)p - ,  p-  ) -- 781 

tO0 = d d  

(n(2)~o ~ ~o~ = 6[1+ ~f3-/2 + �89 + 2(1~)2y - ( 1 ~ ) 2 8  + 2(11)2• 

+ (2~)zv/+ � 89  �89189 = 785 

g * +  = us 

1 2 (H~2)K * +, g *+ ) = 611+ r  + ~i I/3 + 5v + 28 - 2 ~  + �89189 = 901 

K *~ = d.~ 

(HCZ)K *~ K *~ ) = 611 + v/3/2 + �89 + [ (1~)  2 + 4 ] y  + 2(1 ~z) 8 - ( 2~ )  ~ 

+ �89  �89189 = 905 

(H(Z)qP, q, ~ =611+Vr3/Z+�89 

q , / J  = ce  

i 2 (H(2)~/J, tp/J) = 611 +v/-3/2+~i1 / 3 + 3 2 y - 1 6 8  

+27X + 9 ~ / + � 8 9  = 3120 

It appears as though 71 ~ is an exception. If we define ~ = (2)- I/Z(d~ ? | 
d r L  -I- r $ | then 

(H~2)~, ~) = 2(1 ~)2y  - (1~)28 + (I~)ZA + � 89  �89189 v = 143 

but this mass does not seem to have been observed. We conjecture that 
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7 ~ = ( 2 ) - I / 2 ( ~ , +  ~) .  If  this is the case, then 

(H(2)n~ 7 ~ = �89 ( (H(2)n ' ,  ~ ' )  + {H12)~, ~ ) )  = 548 

Finally, we summar ize  our  calculat ions for  some recently discovered 
mesons  which still have fairly large exper imenta l  errors: 

D O = ug 

~H<2)D ~ D ~ = 1849 

(H~2)D *~ D *~ = 1967 

D- = dg 

~H~2)D -,  D -  ) = 1855 

~H~2)D * - ,  D * -  ) = 1974 

F -  = s6 

{H~2)F -,  F -  ) = 2139 

{H~2)F * - ,  F * -  ) = 2217 

yO = b b  

~H~2)yO, yO)  = 9423 

(H~2)y.O, y .O)  = 10116 

One might  object  that  with the number  of  cons tants  included in the 
above Hamil tonians ,  one can predict  anything.  This  is certainly a valid 
argument .  However ,  except for the eight basic constants ,  the others follow a 
fairly regular pat tern,  and the n u m b e r  of  predicted masses  far  exceeds the 
n u m b e r  of  constants .  
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